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• We consider the task of semantically enriching texts at the sentence level 
using proposition-based topics that model the main events underlying 
the texts. 

• The aim is to obtain semantically deeper representations of texts to be 
applied for further text analysis; e.g., to predict basic actions, events or 
sentences in a text document. 

Motivation 

Our approach 
• A general methodology that extends the framework of PTM to allow 

mapping natural language sentences to a topic-like representation of 
events based on distributions of propositions; where each distribution is 
deemed to be a human interpretable abstraction useful to describe the 
main actions involved in the sentences. 

• Provides an enriched representation for sentences that describes their 
main contents, even though the propositions in the descriptions do not 
explicitly appear in the texts.  

Basic components 
• A PS (i.e., a collection of propositions gathered from a reference 

collection of unlabeled texts) 𝑆 = {𝑠𝑖}𝑖   representing the BKB from which 
to learn the statistical models to base the enrichment of an input text. 

 

• A set of classes 𝐶 = {𝑐1, … , 𝑐|𝐶|} such that: 

   instances of predicate argument 𝐴𝑟,𝑖  can be represented by 𝐶𝑟,𝑖 ⊆ 𝐶. 

 

• A class-based selectional preference model Γ that maps each predicate r 
to a discrete distribution of class tuples that model the stochastic 
generation of individual propositions with the form 
𝑠 = 𝑟(𝑎1, … , 𝑎𝑎𝑟𝑖𝑡𝑦(𝑟)): 

 

Γ(𝑟) ⊢ (𝐶𝑟,1 ×⋯× 𝐶𝑟,𝑎𝑟𝑖𝑡𝑦(𝑟) → (0,1]) 

 

To support interpretability, classes are represented by means of common 
nouns (specifically, nominal phrases) 
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𝑝 𝑠 = 𝑟 𝑎1, … , 𝑎𝑎𝑟𝑖𝑡𝑦 𝑟 = 

=  𝑝(𝑧 = 𝛤(𝑟)𝑘)  𝑝(𝑎𝑖|𝑧(𝑖))

𝑎𝑟𝑖𝑡𝑦(𝑟)

𝑖=1

|𝛤(𝑟)|

𝑘=1

 

 

Γ 𝑡ℎ𝑟𝑜𝑤 =

(𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑏𝑎𝑐𝑘, 𝑝𝑎𝑠𝑠)

(𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑏𝑎𝑐𝑘, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛)
(𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑏𝑎𝑐𝑘, 𝑏𝑎𝑙𝑙)
(𝑝𝑒𝑟𝑠𝑜𝑛, 𝑏𝑎𝑙𝑙)
(𝑔𝑟𝑜𝑢𝑝, 𝑏𝑎𝑙𝑙)

0.54
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0.05

⋮ ⋮
(𝑝𝑒𝑟𝑠𝑜𝑛, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛) 0.002

 

p 𝑠 = 𝑡ℎ𝑟𝑜𝑤 𝒀𝒐𝒖𝒏𝒈, 𝒃𝒂𝒍𝒍

= 0.54 p 𝒀𝒐𝒖𝒏𝒈 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑏𝑎𝑐𝑘  p 𝒃𝒂𝒍𝒍 𝑝𝑎𝑠𝑠 + 
⋮ 

    +0.002 p 𝒀𝒐𝒖𝒏𝒈 𝑝𝑒𝑟𝑠𝑜𝑛  p(𝒃𝒂𝒍𝒍|𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methodology 

Input text:  Steve Young threw a touchdown pass to Brent Jones, 
                     who made an incredible play to score an important point 

s1= throw (Steve Young, touchdown 
pass) 

s3= score (Brent Jones, an important 
point) 

z1= throw (<quarterback>, <touchdown, pass>) z3= score (<person>, <point>) 

z'1=  t23 z‘3=  t23 

s2= make(Brent Jones, incredible play) 

z2= make(<person>, <play>) 

z‘2=  t85 

… … … 

t23 : t85 : 

throw(person,ball) 
throw(quarterback, touchdown pass) 
throw(quarterback, ball) 
catch(person,ball) 
score(person,point) 

make(person,play) 
do(person,thing) 

𝑠𝑖 = 𝑟𝑖 𝑎𝑖,1, … , 𝑎𝑖,𝑎𝑟𝑖𝑡𝑦 𝑟𝑖  

Label  𝑧𝑖 = 𝑟𝑖(𝑧𝑖 1 ,… , 𝑧𝑖[𝑎𝑟𝑖𝑡𝑦(𝑟𝑖)]) 

 

where  𝑧𝑖 = argmax𝑧  p(𝑧|𝑠𝑖) 

p 𝑧 = Γ 𝑟𝑖 𝑘  𝑠𝑖)  ∝ p(𝑧 = Γ 𝑟𝑖 𝑘)  p 𝑎𝑖,𝑗 𝑧[𝑗])

𝑎𝑟𝑖𝑡𝑦(𝑟𝑖)

𝑗=1

 

Enriching argument instances with classes 

• A similar generative story to that of LDA to label each 𝑧𝑖 with topic: 

𝑧′𝑖 ∈ 𝑇 = {𝑡1, … , 𝑡|𝑇|} 

but considering the collection {𝑧𝑖}𝑖 as a single document. 

 

• Each topic is learned as an explanation of a given class-based proposition : 

∃ 𝑧𝑡 behind each topic t 

 

• Topics are not so latent and we use a fixed 𝑝 𝑧 𝑡 = 𝑝(𝑧|𝑧𝑡) (a stochastic 
mapping between class-based propositions estimated from co-occurrences). 

 

• Constrained sampling for 𝑧 = 𝑟 𝑐1, … , 𝑐𝑎𝑟𝑖𝑡𝑦 𝑟 : 

possible topics are those behind 𝑧∗ = 𝑟∗ 𝑐∗1, … , 𝑐
∗
𝑎𝑟𝑖𝑡𝑦 𝑟∗  

   where PMI(𝑟, 𝑟∗) and PMI(𝑧, 𝑧∗) are greater than a threshold. 

Enriching sentences with topic-like events 

• Classes: 

p 𝑐 𝐴𝑟,𝑖 ∝   p
∗ 𝑐|𝑐′ p 𝑐′|𝑎 p(𝑎|𝐴𝑟,𝑖)

𝑎∈𝐴∗𝑐′∈𝐶

 

We define 𝐶𝑟,𝑖 = 𝑐  p 𝑐 𝐴𝑟,𝑖 > θ0, PMI 𝑐, 𝐴𝑟,𝑖 > γ0}  

 

• Class-based SPF model: 

For each r, we need to infer some priors for the tuples in 𝐶𝑟,1 ×⋯× 𝐶𝑟,𝑎𝑟𝑖𝑡𝑦(𝑟). 

We consider a Gibbs sampling procedure that randomly assigns a class-based 

proposition to each 𝑠 = 𝑟 𝑎1, … , 𝑎𝑎𝑟𝑖𝑡𝑦 𝑟  according to: 

p 𝑧 = Γ 𝑟 𝑘  𝑠) ∝  
𝑛𝑘 + α

𝑁 + α𝐾
 𝑝(𝑎𝑖|𝑧[𝑖])

𝑎𝑟𝑖𝑡𝑦(𝑟)

𝑖=1

 

Component Learning 

We consider a collection of 30,826 New York Times articles about US football that was partitioned in 80%-20% 
training-test documents. The top 1500 most frequent predicates were considered. 
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Event interpretability 
Averaged values of the Umass coherence measure 
obtained for the learned distributions of class-based 
propositions (ε=1.0e-50). 
 

Predicting propositions 
Averaged values of log-likelihood obtained in the 
generation of test documents represented as bags of 
propositions. 

Method n=5 n=10 n=15 n=20 

HDP-baseline -748.67 -3622.4 -9074.4 -17489.1 

Our proposal -630.39 -3020.6 -5652.6 -7368.1 

Document size HDP-baseline Our proposal 

[1;50] -90.68 -22.64 

[51;100] -220.52 -84.77 

[101;150] -290.19 -102.67 

[151;200] -367.15 -113.04 

[201;250] -422.37 -89.51 

any -216.01 -75.05 

Advances in Distributional Semantics Workshop (Co-located with IWCS 2015) 


