

Enriching Texts with Interpretable Topics of Propositions

Henry Anaya-Sánchez and Anselmo Peñas {henry.anaya, anselmo}@lsi.uned.es

Advances in Distributional Semantics Workshop (Co-located with IWCS 2015)

NLP & IR Group, UNED Juan del Rosal 16,

28040 Madrid, Spain http://nlp.uned.es

Motivation

- We consider the task of semantically enriching texts at the sentence level using proposition-based topics that model the main events underlying the texts.
- The aim is to obtain semantically deeper representations of texts to be applied for further text analysis; e.g., to predict basic actions, events or sentences in a text document.

Our approach

- A general methodology that extends the framework of PTM to allow mapping natural language sentences to a topic-like representation of events based on distributions of propositions; where each distribution is deemed to be a human interpretable abstraction useful to describe the main actions involved in the sentences.
- Provides an enriched representation for sentences that describes their main contents, even though the propositions in the descriptions do not explicitly appear in the texts.

Basic components

- A PS (i.e., a collection of propositions gathered from a reference collection of unlabeled texts) $S = \{s_i\}_i$ representing the BKB from which to learn the statistical models to base the enrichment of an input text.
- A set of classes $C = \{c_1, ..., c_{|C|}\}$ such that: instances of predicate argument $A_{r,i}$ can be represented by $C_{r,i} \subseteq C$.
- A class-based selectional preference model Γ that maps each predicate rto a discrete distribution of class tuples that model the stochastic of individual propositions with the form generation $s = r(a_1, \dots, a_{arity(r)})$:

$$\Gamma(r) \vdash (C_{r,1} \times \cdots \times C_{r,aritv(r)} \rightarrow (0,1])$$

To support interpretability, classes are represented by means of common nouns (specifically, nominal phrases)

$$p\left(s=r(a_1,...,a_{arity(r)})\right) = \begin{cases} (quarterback,pass) & 0.54\\ (quarterback,interception) & 0.21\\ (quarterback,ball) & 0.07\\ (person,ball) & 0.06\\ (group,ball) & 0.05\\ \vdots & \vdots\\ (person,interception) & 0.002\\ p(s=throw(\textbf{Young},\textbf{ball})) \\ = 0.54 \text{ p}(\textbf{Young}|quarterback) \text{ p}(\textbf{ball}|pass) + \\ \vdots\\ +0.002 \text{ p}(\textbf{Young}|person) \text{ p}(\textbf{ball}|interception) \end{cases}$$

Methodology

Enriching argument instances with classes

$$s_i = r_i \big(a_{i,1}, \dots, a_{i,arity(r_i)} \big)$$
 Label $z_i = r_i (z_i[1], \dots, z_i[arity(r_i)])$

where
$$z_i = \operatorname{argmax}_z p(z|s_i)$$

$$p(z = \Gamma(r_i)_k \mid s_i) \propto p(z = \Gamma(r_i)_k) \prod_{j=1}^{arity(r_i)} p(a_{i,j}|z[j])$$

Enriching sentences with topic-like events

• A similar generative story to that of LDA to label each z_i with topic:

$$z'_{i} \in T = \{t_{1}, \dots, t_{|T|}\}$$

but considering the collection $\{z_i\}_i$ as a single document.

- Each topic is learned as an explanation of a given class-based proposition : $\exists z_t$ behind each topic t
- Topics are not so latent and we use a fixed $p(z|t) = p(z|z_t)$ (a stochastic mapping between class-based propositions estimated from co-occurrences).
- Constrained sampling for $z = r(c_1, ..., c_{arity(r)})$: possible topics are those behind $z^* = r^*(c^*_1, ..., c^*_{arity(r^*)})$ where $PMI(r, r^*)$ and $PMI(z, z^*)$ are greater than a threshold.

Component Learning

• Classes:

$$p(c|A_{r,i}) \propto \sum_{c' \in C} \sum_{a \in A^*} p^*(c|c')p(c'|a)p(a|A_{r,i})$$

We define $C_{r,i} = \{c \mid p(c|A_{r,i}) > \theta_0, PMI(c, A_{r,i}) > \gamma_0\}$

• Class-based SPF model:

For each r, we need to infer some priors for the tuples in $C_{r,1} \times \cdots \times C_{r,aritv(r)}$. We consider a Gibbs sampling procedure that randomly assigns a class-based proposition to each $s = r(a_1, ..., a_{arity(r)})$ according to:

$$p(z = \Gamma(r)_k | s) \propto \frac{n_k + \alpha}{N + \alpha K} \prod_{i=1}^{arity(r)} p(a_i | z[i])$$

Experiments

We consider a collection of 30,826 New York Times articles about US football that was partitioned in 80%-20% training-test documents. The top 1500 most frequent predicates were considered.

Event interpretability

propositions (ϵ =1.0e-50).

Method	n=5	n=10	n=15	n=20
HDP-baseline	-748.67	-3622.4	-9074.4	-17489.1
Our proposal	-630.39	-3020.6	-5652.6	-7368.1

Predicting propositions

Averaged values of the Umass coherence measure Averaged values of log-likelihood obtained in the obtained for the learned distributions of class-based generation of test documents represented as bags of propositions.

Document size	HDP-baseline	Our proposal
[1;50]	-90.68	-22.64
[51;100]	-220.52	-84.77
[101;150]	-290.19	-102.67
[151;200]	-367.15	-113.04
[201;250]	-422.37	-89.51
any	-216.01	-75.05

References

- •David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet Allocation. J. Mach. Learn. Res., 3:993–1022, March.
- •D. Mimno, H.M. Wallach, E. Talley, M. Leenders, and A. McCallum. 2011. Optimizing semantic coherence in topic models. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 262-272.
- Anselmo Peñas and Eduard Hovy. 2010. Filling knowledge gaps in text for Machine Reading. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pages 979–987. Association for Computational Linguistics.
- •Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. 2006. Hierarchical Dirichlet Processes. Journal of the American Statistical Association, 101(476):1566–1581.