
2. System Description: distant supervised learning. 
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4. Slot temporal restrictions. 
   Use Tarsqi to get temporal relations: 

included, simultaneous, after, before, begun_by, ended.!

  Temporal relations acquisition: identify a syntactic pattern:!

<EVENT> - <PREPOSITION> - <TIME EXPRESSION>!

within the lexical context of the extracted entity and value.!

  Transform into one of: within, throughout, beginning, ending, after, 
before.!

  Semantic considerations: classify time constraints: 

start – finish – period.!
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1. A distant supervised system, specialized for the Regular Slot Filling 
and Full Temporal Slot Filling subtasks 
 
 
  Automatically gather training data for supervised slot classifiers from the initial Knowledge Base 

and source document collection.!

  Use a rich document representation, augmenting syntactic dependency trees.!

  Find and aggregate time constraints for the same slot value across different documents.!

6. Regular Slot Filling Subtask (SF). 
  By the time of submission, the system was not fully developed (we 

do not report results in this poster).!

  Our training did not cover all seeds: use of supervised seeds.!

  SVM multi-class classifier with the positive and negative examples.!

  Results below average of the systems.!

7. Temporal Slot Filling Subtask (TSF). 
  We used a battery of binary classifiers: SVMLight.!
  Once extracted the <entity, slot type, value >, temporal constraints 

are generated depending of semantics of the event, slot type and 

the temporal restriction found.!

  Generated temporal constraints are aggregated.!

  Results slightly above the median and mean of the systems.!

5. Learning extractors. 
  Gathering of distant training examples: from a seed triple!

< entity, slot type, value >!

we retrieve candidate documents that contain both entity and value.!

  Named Entity type matching.!

  Each example was represented by binary features.!

  Classification process: supervised classification (linear SVM).!
  Answer aggregation!

3. Document Representation: augmented dependency graphs. 
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9. Conclusions.!
  The performance of our simple distant learning system varies by slot type. !
  Our systems (TSF) have the highest precision among participants, but low recall. !

  Graph representation has helped: we expect a performance improvement from a better document 

representation.!

  Simple aggregation of dates found in documents was a strong baseline we could not beat. !

8. Preliminary Results: 2011 Temporal SF full task scores 
System! # filled 

responses!
Precision! Recall! F1!

BLENDER2! 1206 ! 0.1789! 0.3030! 0.2250!
BLENDER1! 1116! 0.1796! 0.2942! 0.2231!
BLENDER3! 1215! 0.1744! 0.2976! 0.2199!
IIRG1! 346! 0.2457! 0.1194! 0.1607!
UNED2! 167! 0.2996! 0.0703! 0.1139!
UNED1! 177! 0.2711! 0.0674! 0.1079!
UNED3! 167! 0.2596! 0.0609! 0.0986!
Stanford 12! 5140! 0.0233! 0.1680! 0.0409!
Stanford 11! 4353! 0.0238! 0.1453! 0.0408!
USFD20112! 328! 0.0152! 0.0070! 0.0096!
USFD20113! 127! 0.0079! 0.0014! 0.0024!

  We had 0 correct results for the residence slots! Why?!
•  The assumption that for < entity, slot type, value >, a text that contains entity and value is a 

positive example is wrong.!

•  <entity, value> might express many relations. This effect is stronger for some types 

(e.g. locations).!
(see S. Riedel, L. Yao, and A. McCallum. 2010. Modeling relations and their mentions without labeled text. ECML/PKDD 2010)!

Slot! # filled 
in key!

# filled 
responses!

Precision! Recall! F1!

per:stateorprovinces_of
_residence!

20! 1! 0! 0! -!

per:employee_of! 86! 1! 0! 0! -!

per:countries_of 
_residence!

44! 3! 0! 0! -!

per:member_of! 109! 59! 0.1967! 0.1065! 0.1382!

per:title! 287! 68! 0.3528! 0.0836! 0.1352!

org:top_members/
employees!

89! 20! 0.6034! 0.1356! 0.2214!

per:spouse! 53! 10! 0.2377! 0.0449! 0.0755!

per:cities_of_residence! 24! 5! 0! 0! -!

TOTAL! 712! 167! 0.2996! 0.0703! 0.1139!
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